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A method is proposed for applying the theory of generalized group functions to SCF-GF calcu-
lations with large basis sets. A simple procedure for localising the SCF—MO’s resulting from a standard
SCF calculation is described, with applications to H,O, NH;, CH, and H,0,. Results compare quite
favourably with those obtained by the usual GF method. It is shown that when basis functions are
the SCF—-MO’s and there are only two functions per group, the GF approach is practically equivalent
to a configuration interaction treatment where only double excitations within the groups are considered.

Es wird eine Methode zur Anwendung von verallgemeinerten Gruppenfunktionen auf SCF~GF-
Rechnungen mit groBen Basissitzen vorgeschlagen. Ferner wird ein einfaches Verfahren zur Lokali-
sierung von SCF-MO’s angegeben und auf H,0O, NH;, CH, und H,0, angewendet. Die Resultate
sind denen iiblicher GF-Methoden #hnlich. Wenn als Basisfunktionen SCF-Funktionen, und zwar
nur zwei je Gruppe, angewendet werden, ist der GF-Ansatz praktisch einer CI-Rechnung mit maximal
Zweifachanregungen dquivalent.

On propose une méthode pour appliquer la théorie des fonctions de groupes généralisés a des
calculs SCF GF dans des bases de grande dimension. Un procédé de localisation simple est décrit,
il permet de localiser les orbitales SCF ordinaires et est appliqué & H,O,NH;, CH, et H,0,. Les
résultats obtenus sont comparables 4 ceux fournis par la méthode GF ordinaire. Lorsque les fonctions
de base sont les O.M. S.C.F. et qu’il n’y a que deux fonctions par groupe, la méthode GF est pratique-
ment équivalente & une interaction de configuration ol seules seraient prises en considération les
diexcitations a Pintérieur des groupes.

1. Introduction

The theory of generalised group functions [1, 2, 3] has been successfully
applied to self-consistent group calculations on some polyatomic molecules
with a minimal basis set of STO’s [4, 5, 6]. The results were superior to those
obtained by the standard SCF method.

A difficulty in extending such GF approach to larger basis sets is, that the con-
struction of the localized orbitals through the optimum hybrids, from which they
might be formed, involves a choice which is by no means unique. Various proce-
dures for constructing optimum hybrids in the case of minimal basis sets (see, for
instance, Ref. [7], where a full bibliography is given) have been proposed.

A different and convenient approach is to look for a procedure of localization
of the SCF-MO’s obtained by standard SCF calculations. In fact, the ground
state orbitals and their virtual counterparts constitute an orthonormal set which
satisfy one of the fundamental conditions for a GF calculation in its more simple
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scheme. Therefore, such a set needs only to be suitably localized by an unitary
matrix and collected in groups to be used within a GF approach.

In the present paper some localization procedures are reported together with
some applications for a variety of molecules, using minimal and more extended
basis sets. Some of the molecules studied here had not been treated previously
by the GF method.

In most cases, basis integrals were used which had already been evaluated
for other purposes: the relative computer programs have been described else-
where [8]. The GF programs were written by the authors for the 7090-IBM com-
puter of the University of Pisa.

All calculations were carried out for the experimental distances and angles,
the z axis being always the axis with the highest symmetry.

In the future, the same approach described in this paper will be employed with
larger basis sets.

2. Description of Calculation
A. Method

The basic theory has been outlined in Refs. [3] and [4] and the same notations
and formalism will be used here.

The effective Hamiltonian for the Ny electrons of group R in the field of all
other groups is defined as

Nr
Hie (1,2,..,Ng)= Z h& () +3 z’ 1/r;; 1)

i=1 ij=1
where

W ()=h)+ 3, (%0~ K°0) 2

is an effective one-electron Hamiltonian and J5, K® the coulomb and exchange
operators for the S-groups electrons [4].

For a group R in state r, described by the Ny-electrons group function ¢p,,
the energy in the field of all others group is given by

(D, |#ke | Prr)

B 7)== g Lo

©)

while the total energy is

E0=§H§f (rr)—%RZ;s’ {JBS(rr,ss) — R®(rr,ss)} =3, {H*(rr)+ HE (r1)} . (4)
N R

For the energy and all other molecular properties given by simple formulae
such as (4), it is necessary that groups R and S are “strong orthogonal” [4]:
this condition may be achieved by constructing the group function ¢g, from an
orthonormal set of orbitals and by not allowing any orbital to belong to different
groups. Usually, a Lowdin orthogonalization of the atomic orbital set is accom-
plished [4, 5, 6]. The present approach is instead to start from the SCF-MO’s
which are authomatically orthonormal.
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It is then necessary to localize them and some methods are described in the
following paragraph.

B. Localized Orbitals for GF Calculations

Many localization procedures have been proposed in literature, notably
the ones reported in Refs. [9] and [10]. Three different methods have been used
here, whose most general one has been put forward by Boys [11] and will be
referred to as [Loc. (1)]. It needs the handling of the one-electron dipole
moment integrals only and is based essentially upon the following procedure.

Let {1, @25 .0 @j ..., Pps -, @) be a set of MO’s, whose first m are occupied.
For these m orbitals, the method looks for a minimum of the sum of the mean
square deviations of their charge densities from their centers of gravity, ie.,

Y. filF —Fo)?| f;> = minimum value
j=1
where

70}:<fj|ﬂfj> and {fl’fb "'9fm}={(P1’ Do -5 (pm} U,

with UTU=1,1 being the identity matrix. Starting from some approximate
values of the centers of gravity of the occupied orbitals, the process is repeated
iteratively by determining at each cycle a matrix U”*1 such that

m
F(n+1): z <fj(n+1) I(;__F(On})Zlf;n+1)>§F(n)
ji=i
where

=PRSS, U= (e} IUDUS U0 = {(f* ) U,

As for the (n — m) virtual ones, they are employed to obtain orbitals localized
on the centers of gravity, 7o; (which do not change any longer), of the occupied
ones. At first, a set of I, < m virtual orbitals are localized on the corresponding
ground state orbitals by achieving the condition

Y. 84 gy; (F— 7o) g1;> = minimum value
j=1
where

{gl}={§0m+1= (pm+2a"'7(pn} VI) Wlth VI VI :III

and §; is 1 or 0 according with the fact that a virtual orbital has to be localized
or not on the orbital ¢; at the stage I, i.c., ). 6;=1.
j

Subsequently, the new quantity

; 5 <g11, (7"_’"01) |gIIj>

is minimised, where {gg} ={@piis1s---» Pa} Vi, Vo Vif=1). Again 6} =1,0
and Y o'=1I;<1; furthermore, if §}=0, also 6'=0 and so on. This symbol 8
i
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has been introduced only to allow for the facts that a different number of virtual
orbitals may be localized at each stage and may be wanted to be localized on each
occupied one.

In the cases of H,O and NH; another procedure has also been used [Loc. (2)].
From the MO’s of symmetry (2g,) and (3q,), two new vectors have been formed,
pointing towards the positive and negative side of the z axis, by rotation through
an angle o. By mixing them with the orbitals of symmetry (b) (for H,O) and of
symmetry (e) (NH,), the bond hybrids and the lone pairs have been obtained. The
angle « has been determined by minimising the content of s in the lone pairs.
As for the virtual orbitals, they are completely determined by symmetry for the
cases of minimal basis sets. In the case of H,O with a double { on the 1s of oxygen
[set (b)] the orbital (5a,) has been assigned to the inner shell group.

Finally, a third method [Loc. (3)] has been used for H,O [set (b)]. It consists in
rotating the (24,) and (3a;) MO’s to form two new vectors as above, one of which
is taken to be such to form with (1b,), at the origin, an angle equal to the valence
angle (105°).

By using the GF approach, a full configuration interaction is then allowed
within the two-electron group R, whose group function is described by the N
localized one-electron functions 7;.

3. Results and Discussion

The basis sets and the results of the SCF and GF calculations for H,O, NH;,
CH, and H, O, at four configurations (0°, 120°, 150°, 180°), are reported in Table 1.
For H,O (a) the orbital exponents are the same as in the case III of Ref. [5], while
for all other molecules they were taken from Ref. [12]. In the case of H,O (b),
the {’s are “best atom” {’s [13], but for { and the two {,, of oxygen. i has been
determined by minimizing the energy of H,O for a minimal basis set [14], while
the two {;, of oxygen were determined by keeping the lower {, which is the best atom
{ [13] as a constant, and by varying the second value in order to get a minimum
for the energy of O* 6. The energy values obtained by this procedure vary very little
for {, > 11: hence the choice of this value for {,.

The SCF energies of H,0, agree well with those reported by Palke and Pitzer
[15] although the orbital exponents are slightly different: no energy minimum at
intermediate angles is found. The quantity 4, i.e., the decrement of energy, relatively
to the SCF, is ~0.064 a.u. for all 4 configurations and, of course, the internal rota-
tion potential curve obtainable by the GF values is parallel to. the SCF one.
The cis-trans energy difference is 0.0204 a.u. for the SCF and 0.0203 a.u. for the
GF calculation, while E (120°) — E (180°) is 0.0018 a.u. and 0.0017 a.u. respectively.

Also for all other molecules, the energy values are lower than the corresponding
SCF and usual GF ones. The decrement of energy, 4, depends upon the number of
groups in which some correlation is allowed for, upon the type of such groups,
and upon the localization procedure. The dependence upon the first two factors
is shown by the fact that, for H,0,, 4 is the same for all configurations, but is
much greater than for H,O (b) and NH;, all having three partially correlated
groups. On the other hand, 4 is almost the same for H,O (a) and (b), where there
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Table 1. SCF and GF energies of H,0 [(a) and (b)), NH;, CH, and H,0, (4 configurations) [Loc. (1)]

Molecules and Method, of Energies (a.u.)
orbital exponents calculation -
Total Total 4 2 Kin. En.
electron. (electr. 4+ nucl.) Pot. En.
H,09 1s =7.6579 SCF — 84.88877 — 75.70232 —1.00104
2s =22458 —0.03501
{oX 2p, =2.2266 GF — 8492378 — 7573733 —1.00094
2p, =2.2266
2p, =2.2266
{q {1s =130
H,0® 1s = 7.658 SCF — 8490202 - 75.71561 —1.00311
1s =11.000 0.03544
2s = 22461 GF — 8493747 — 75.75105 —1.00314
bo 2p, = 2.22625
2p,= 2.22625
2p,= 2.22625
{y {1s = 1.28
NH, 1s =6.70 SCF — 6793973 — 56.00448 —1.00304
2s =1.925 —0.04665
{ng 2p,=1.925 GF — 6798638 — 56.05113 —1.00304
2p,=1.925
2p, =1.925
{y {1s =1.267
CH, is =5.716 SCF — 5349876  — 40.11287 —1.00233
28 =1.625 —0.05803
{cX 2p,=1.625 GF — 53.55679 — 40.17090 —1.00254
2p, =1.625
2p, =1.625
{q {1s =1.28
H,0, 1s =7.6482 SCF —186.9596 —150.2231 —0.99823
2s =2.2597 —0.0643
180° (o4 2p, =2.2145 GF —-187.0239 -150.2874 ~0.99824
2p,=2.2145
I 2p, = 2.2145
{y {1s =1.2675
H,0, SCF —186.9635 —150.2229 —0.99824
150° —-0.0642
11 GF —187.0277 —150.2871 —0.99824
H,0, SCF —186.9748 —150.2213 —0.99823
120° —0.0644
I GF —~187.0391 —150.2857 —0.99824
H,0, SCF -187.0515 —150.2027 —0.99813
0° —0.0644
v GF —187.1159 —150.2671 —0.99816
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are 2 and 3 such groups, respectively. The dependence of A upon the localization
procedure is shown in Table 2, where the results of the calculations on H,O (a)
and (b) and NH, are reported. The group properties, such as Hj; and electric
dipole moment, appear to be much affected by the localization procedure, while
the total energies and the total electric dipole moment are less.

The from zero different components of the electric dipole and the quadrupole
moments of all molecules here considered are reported in Tables 3 and 4. The
differences between the SCF and GF values are small and show that the electron
distribution for a given basis does not change noticeably going from an SCF to
a GF treatment. The fact, that the one-electron density matrix does not vary
too much from cycle to cycle of iterations in the GF process, is shown also from
the smallness of the coefficients of the determinants corresponding to the single
excitations.

Therefore, it is of some interest to compare the results of the GF approach
with those which would be obtained by a configuration interaction treatment with
double excitations only. Such comparison gives also a clue for a better under-
standing of the physical meaning of 4, when the ortho-normal set of orbitals used
with the GF approach are the SCF-MO’s.

For each group R constituted by only two basis orbitals r, and r, the group
function ¢ will be given by (dropping the suffix r for the state)

3
dr= 2, Ciof &)
i=1
where
R——l—sﬂ(r 7.): R—i&{[(rf)—(Fr)]' R—Lﬂ(r 7s)
®1 1/5 1r)s @2 2 172 1F2)15 P3 W 2¥3).

The matrix of the 3 x 3 secular problem to be diagonalized at the first cycle of
iteration of the GF approach, is of the form

R R
Heff1 1 0 Heff13
R R
0 Heffzz Heffzg,
R R R
Heff31 Heff3z Heff33

where Hf;, = (o |5 F>. #.5:is given by (1) and is calculated with the density
matrix arising from the SCF calculation: therefore, at the first cycle of iteration, the
energy E,, calculated by the GF approach, i.e.,

EO=%§{HR(VF)+H§H(VV)} (6)

coincides with the SCF energy.

The elements HE;  =(rr,|r r,) and HE,, are smaller than the diagonal
ones: the decrement of energy, relatively to E,, due to the group R, can then be
calculated, up to the second order, by the perturbation method as
|Hee, ol

effi3

Op= —— 13 7
K (HeR}fll - H§f33) ( )

4%
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and the total decrement, 4, as a sum over the groups in which some correlation
is allowed for, i.e.,
A=E? = Z Og -
R

So 4 appears to have the same addictive properties as E.

From the above treatment it is clear that the GF approach, when the basis
functions are the SCF-MO’s and there are only two functions per group, is
practically equivalent to a configuration interaction treatment in which only
doubly excited states would be considered: in fact, the coefficients C¥ correspond-
ing to single excitations are always very small.

For example, in the case of H,O (b), the determinants to be taken in considera-
tion should be

1 — — - - —
'Po = W%(Ka K, B1, B1> BZaBZ> L1> L17 Lz,Lz) >

1 — — - — —
lPl = T ia &/(K’a K/a Bl= Bla BZ: B2> Lla L19 L2> LZ) P

/10

1 — — - _ -
¥,-——4(K,K,B,,B,,B,,B,,L,,L,,L,,L,),

/10

1 — — = - -
VY,=—#(K,K,B,B,B,,B,,L,, L, L,,L,).

/10

In fact, the diagonalization of the determinant
HOO HOl HOZ H03
H, Hy,; ©0 0

where Hy, = (¥ |#| ¥,), gives almost the same result for the ground state energy
as the coresponding GF calculation, the difference being a few units on the sixth
significant figure.

By the perturbation method, the energy up to the second order is given by

E=EO +E(2)=E0 + z |H01i2
A (HOO_H/M)

and it is easy to verify that
' HOl:Hﬁ‘fm and (Hoo‘Hu):(Hiszu—Hfff”)

where A refers to the determinant describing the double excitation relative to the
substitution of orbital r; with r, in the group R.

The results of Table 2 can be explained now on the basis of (5), (6) and (7).
In the case of H,O (b), for example, the A4 obtained with Loc. (1) is lower than that
with Loc. (2) and (3) for the higher value of (HS,,, — HX;,.) in the bond, owing to
atoo high contribution of the two 1s oxygen orbitals to the excited bond orbital B},

while H; , = (B, B | B B}) is almost the same in all cases.
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The two values of 4 in the cases of Loc. (1) and Loc. (2) may be split in their
components o, which are given by, respectively

Oimner shen = —0.0114; 6, .= —0.0120, [Loc.(1)]
and
Oinner shett = — 0.0103;  dpng = —0.0200. [Loc. (2)]
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