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A method is proposed for applying the theory of generalized group functions to SCF-GF calcu- 
lations with large basis sets. A simple procedure for localising the SCF-MO's resulting from a standard 
SCF calculation is described, with applications to H20, NH 3, CH 4 and H202. Results compare quite 
favourably with those obtained by the usual GF method. It is shown that when basis functions are 
the SCF-MO's and there are only two functions per group, the GF approach is practically equivalent 
to a configuration interaction treatment where only double excitations within the groups are considered. 

Es wird eine Methode zur Anwendung von verallgemeinerten Gruppenfunktionen auf SCF-GF- 
Rechnungen mit groBen Basiss~itzen vorgeschlagen. Ferner wird ein einfaches Verfahren zur Lokali- 
sierung yon SCF-MO's angegeben und auf H20, NH3, CH4 und H202 angewendet. Die Resultate 
sind denen tiblicher GF-Methoden iihnlich. Wenn als Basisfunktionen SCF-Funktionen, und zwar 
nur zwei je Gruppe, angewendet werden, ist der GF-Ansatz praktisch einer CI-Rechnung mit maximal 
Zweifachanregungen [iquivalent. 

On propose une m6thode pour appliquer la th60rie des fonctions de groupes g6n6ralis6s/t des 
calculs SCF GF dans des bases de grande dimension. Un proc6d6 de localisation simple est d6crit, 
il permet de localiser les orbitales SCF ordinaires et est appliqu6/t H20,NH 3, CH 4 et H~O 2. Les 
r6sultats obtenus sont comparables fi ceux fournis par la m6thode GF ordinaire. Lorsque les fonctions 
de base sont les O.M.S.C.F. et qu'il n'y a que deux fonctions par groupe, la m6thode GF est pratique- 
ment 6quivalente /tune interaction de configuration off seules seraient prises en consid6ration les 
diexcitations fi l'int6rieur des groupes. 

1. Introduction 

The theory of generalised group  funct ions  [1, 2, 3] has been successfully 
applied to self-consistent group calcula t ions  on  some polya tomic  molecules 
with a m in ima l  basis set of STO's  [4, 5, 6]. The results were superior  to those 
ob ta ined  by the s tandard  SCF method.  

A difficulty in extending such G F  approach  to larger basis sets is, that  the con-  
s t ruct ion of the localized orbitals through the o p t i m u m  hybrids,  from which they 
might  be formed, involves a choice which is by no  means  unique.  Various proce- 
dures for cons t ruc t ing  o p t i m u m  hybrids  in the case of min ima l  basis sets (see, for 
instance,  Ref. [-7], where a full b ib l iography is given) have been proposed. 

A different and  conven ien t  approach  is to look for a procedure  of local izat ion 
of the S C F - M O ' s  ob ta ined  by s tandard  SCF calculations. In  fact, the g round  
state orbi tals  and  their  vi r tual  counterpar t s  const i tute  an  o r t hono r ma l  set which 
satisfy one of the fundamen ta l  condi t ions  for a G F  calculat ion in its more  simple 

* Present address: Siemens Elettra -Via Fabio Filzi 29-I-20100 Milano. 



GF Calculation with Minimal and Extended Basis Sets 47 

scheme. Therefore, such a set needs only to be suitably localized by an unitary 
matrix and collected in groups to be used within a GF  approach. 

In the present paper some localization procedures are reported together with 
some applications for a variety of molecules, using minimal and more extended 
basis sets. Some of the molecules studied here had not been treated previously 
by the GF  method. 

In most cases, basis integrals were used which had already been evaluated 
for other purposes: the relative computer programs have been described else- 
where [8]. The GF programs were written by the authors for the 7090-IBM com- 
puter of the University of Pisa. 

All calculations were carried out for the experimental distances and angles, 
the z axis being always the axis with the highest symmetry. 

In the future, the same approach described in this paper will be employed with 
larger basis sets. 

2. Description of Calculation 

A. Method 

The basic theory has been outlined in Refs. [3] and [4] and the same notations 
and formalism will be used here. 

The effective Hamiltonian for the NR electrons of group R in the field of all 
other groups is defined as 

NR NR 
ovF~f (1,2 . . . . .  NR)= Z hffff (i)+�89 2 '  1/rij (1) 

in  1 i , j= 1 

where 

hegff (1) = h(i) + 2 (JS(i) - KS(i)) 
s~,R~ (2) 

is an effective one-electron Hamiltonian and js, K s the coulomb and exchange 
operators for the S-groups electrons [4]. 

For a group R in state r, described by the NR-electrons group function qSRr, 
the energy in the field of all others group is given by 

He~ f (rr)= (4Rr I~el~f 1 4 R r >  (3) 
<~Rr I q~Rr> 

while the total energy is 

E o = ~. H~f (rr) - �89 2 '  {jRS( rr, ss) -- RRS(rr, ss)} = �89 2 {HR(rr) + HRf (rr)}. (4) 
R R,S  R 

For the energy and all other molecular properties given by simple formulae 
such as (4), it is necessary that groups R and S are "strong orthogonal" [4]: 
this condition may be achieved by constructing the group function ~bR, from an 
orthonormal set of orbitals and by not allowing any orbital to belong to different 
groups. Usually, a LOwdin orthogonalization of the atomic orbital set is accom- 
plished [4, 5, 6]. The present approach is instead to start from the SCF-MO's 
which are authomatically orthonormal. 
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It is then necessary to localize them and some methods are described in the 
following paragraph. 

B. Localized Orbitals for GF Calculations 

Many localization procedures have been proposed in literature, notably 
the ones reported in Refs. [9] and [10]. Three different methods have been used 
here, whose most general one has been put forward by Boys [-11] and will be 
referred to as [Loc. (1)]. It needs the handling of the one-electron dipole 
moment integrals only and is based essentially upon the following procedure. 

Let {(Pl,  (P2 . . . .  , q~j . . . .  , (p . . . . . .  (p,} be a set of MO's, whose first m are occupied. 
For these m orbitals, the method looks for a minimum of the sum of the mean 
square deviations of their charge densities from their centers of gravity, i.e., 

( f j  I(F- Foj)2l f j )  = minimum value 
j = l  

where 
Voj=(fj iT[fj)  and (f~,f2, . . . , f , ,}={cPl ,  q~2 . . . .  ,~0~) U,  

with U t U = I, I being the identity matrix. Starting from some approximate 
values of the centers of gravity of the occupied orbitals, the process is repeated 
iteratively by determining at each cycle a matrix U ~"+1) such that 

F("+" = ~ ( f )"+ ' ) I (~- ~o"))21 f)"+l,y__<F (') 
j = i  

where 

r(n) <f)") [~[ f)")> {fr = {q)} I U r U ~2) U(,)= {fen-1)} U(,) Oj ~ , . . . .  

As for the (n - m) virtual ones, they are employed to obtain orbitals localized 
on the centers of gravity, goj (which do not change any longer), of the occupied 
ones. At first, a set of I t ____ m virtual orbitals are localized on the corresponding 
ground state orbitals by achieving the condition 

i I  3~(gij [ (r-  to)21 gu) = minimum value 
j=l 

where 

{ g i }  = { q)m + l ,  q) m+ 2 ,  . . . , ~On} VI , with VI VIt  m ] lI 

and fi) is 1 or 0 according with the fact that a virtual orbital has to be localized 
or not on the orbital % at the stage I, i.e., ~, fi~ = 1 I. 

J 
Subsequently, the new quantity 

~ J i ( g l l j  [ ( r - -  FOj)21 g I l j )  
j = l  

is minimised, where {gn}={q~m+t+l . . . .  ,q~n} Vn, (VII VItI =IeII)) �9 Again 5J I=  1,0 
and ~ 5~I= l,,-_ l,; furthermore, if 5~= 0, also fi~' = 0  and so on. This symbol 5 

J 
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has been introduced only to allow for the facts that a different number of virtual 
orbitals may be localized at each stage and may be wanted to be localized on each 
occupied one. 

In the cases of H 2 0  and NH 3 another procedure has also been used [Loc. (2)]. 
From the MO's of symmetry (2al) and (3a0, two new vectors have been formed, 
pointing towards the positive and negative side of the z axis, by rotation through 
an angle e. By mixing them with the orbitals of symmetry (b) (for HzO ) and of 
symmetry (e) (NH3), the bond hybrids and the lone pairs have been obtained. The 
angle e has been determined by minimising the content of h in the lone pairs. 
As for the virtual orbitals, they are completely determined by symmetry for the 
cases of minimal basis sets. In the case of HzO with a double ~ on the ls of oxygen 
[-set (b)] the orbital (5al) has been assigned to the inner shell group. 

Finally, a third method [Loc. (3)] has been used for HzO [set (b)]. It consists in 
rotating the (2al) and (3a~) MO's to form two new vectors as above, one of which 
is taken to be such to form with (lb2), at the origin, an angle equal to the valence 
angle (105~ 

By using the GF approach, a full configuration interaction is then allowed 
within the two-electron group R, whose group function is described by the NR 
localized one-electron functions rl. 

3. Results and Discussion 

The basis sets and the results of the SCF and GF  calculations for H20,  NH3, 
CH4 and H202 at four configurations (0 ~ 120 ~ 150 ~ 180~ are reported in Table 1. 
For HzO (a) the orbital exponents are the same as in the case III of Ref. [5], while 
for all other molecules they were taken from Ref. [12]. In the case of H 2 0  (b), 
the ~'s are "best atom" ~'s [13], but for ~n and the two ~ls of oxygen. ~H has been 
determined by minimizing the energy of H20  for a minimal basis set [14], while 
the two ~1 s of oxygen were determined by keeping the lower ~, which is the best atom 

[13] as a constant, and by varying the second value in order to get a minimum 
for the energy of O + 6. The energy values obtained by this procedure vary very little 
for ~2 > 11: hence the choice of this value for ~2. 

The SCF energies of H2Oz agree well with those reported by Palke and Pitzer 
[15] although the orbital exponents are slightly different: no energy minimum at 
intermediate angles is found. The quantity A, i.e., the decrement of energy, relatively 
to the SCF, is ~ 0.064 a.u. for all 4 configurations and, of course, the internal rota- 
tion potential curve obtainable by the GF  values is parallel to. the SCF one. 
The cis-trans energy difference is 0.0204 a.u. for the SCF and 0.0203 a.u. for the 
GF calculation, while E (120 ~ - E (180 ~ is 0.0018 a.u. and 0.0017 a.u. respectively. 

Also for all other molecules, the energy values are lower than the corresponding 
SCF and usual GF  ones. The decrement of energy, A, depends upon the number of 
groups in which some correlation is allowed for, upon the type of such groups, 
and upon the localization procedure. The dependence upon the first two factors 
is shown by the fact that, for H20  2, A is the same for all configurations, but is 
much greater than for H20 (b) and NH 3, all having three partially correlated 
groups. On the other hand, A is almost the same for H20  (a) and (b), where there 
4 Theoret. claim. Aeta (Berl.) Vol. 13 
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Tab le  1. SCF and G F  energies of H 2 0  [(a) and (b)], N H 3 ,  CH~ and H 2 0  2 (4 configurations) [Loc.  (1)] 

Molecules  and  M e t h o d  of Energies  (a.u.) 
orbi ta l  exponents  ca lcula t ion  

To ta l  Tota l  A 2 Kin. En. 
electron. (electr. + nucl.) Pot. En. 

H20~a) ( l s  = 7 .6 579  SCF - 84.88877 - 75.70232 - 1 . 0 0 1 0 4  

1 2 s  = 2.2458 - 0 . 0 3 5 0 1  
~o,~2p~ = 2.2266 G F  - 84.92378 - 75.73733 - 1 . 0 0 0 9 4  

| 2 p x  = 2.2266 

~-2pr  = 2.2266 

fin {ls = 1.30 

H 2 0  ~b) ( l s  = 7.658 SCF - 84.90202 - 75.71561 - 1 . 0 0 3 1 1  
ls  = 11.000 0.03544 

2s = 2.2461 G F  - 84.93747 - 75.75105 - 1 . 0 0 3 1 4  
2p~ = 2.22625 

l ~ ; :  2.22625 
-- 2.22625 

~n { l s  = 1.28 

N H  3 

C H  4 

H z O 2  

180 ~ 

I 

H 2 0 2  
150 ~ 

I I  

H 2 0 2  
120 ~ 

I I I  

~ ls = 6 . 7 0  SCF - 67.93973 - 56.00448 - 1 . 0 0 3 0 4  

2s = 1 . 9 2 5  - 0 . 0 4 6 6 5  

~N 2p~ = 1.925 G F  - 67.98638 - 56.05113 - 1 . 0 0 3 0 4  
1925 
1.925 

~H {ls  = 1.267 

~ ls  = 5 . 7 1 6  SCF - 53.49876 - 40.11287 - 1 . 0 0 2 3 3  

2s 1.625 - 0 . 0 5 8 0 3  

~c 2Pz 1.625 G F  - 53.55679 - 40.17090 - 1 . 0 0 2 5 4  
| 2 p x  1.625 

k -2pr  1.625 

~n {ls = 1.28 

~ ls  = 7 . 6 4 8 2  SCF - 1 8 6 . 9 5 9 6  -1 5 0 .2 2 3 1  - 0 . 9 9 8 2 3  

2s = 2 .2597  - 0 . 0 6 4 3  

(o 2 p z = 2 . 2 1 4 5  G F  - 1 8 7 . 0 2 3 9  - 150.2874 - 0 . 9 9 8 2 4  

= 2.2145 

~n {ls  = 1.2675 

SCF - 186.9635 - 150.2229 - 0 . 9 9 8 2 4  

- 0 . 0 6 4 2  
G F  - 1 8 7 . 0 2 7 7  -1 5 0 .2 8 7 1  - 0 . 9 9 8 2 4  

SCF - 186.9748 - 150.2213 - 0 . 9 9 8 2 3  

- 0 . 0 6 4 4  

G F  - 187.0391 - 150.2857 - 0 . 9 9 8 2 4  

H 2 0 2  
0 o 

IV 

SCF - 187.0515 - 150.2027 - 0 . 9 9 8 1 3  
- 0 . 0 6 4 4  

G F  - 187.1159 - 150.2671 - 0 . 9 9 8 1 6  
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are 2 and 3 such groups, respectively. The dependence of A upon the localization 
procedure is shown in Table 2, where the results of the calculations on H 2 0  (a) 
and (b) and NH3 are reported. The group properties, such as H~f. and electric 
dipole momem, appear to be much affected by the localization procedure, while 
the total energies and the total electric dipole moment are less. 

The from zero different components of the electric dipole and the  quadrupole 
moments of all molecules here considered are reported in Tables 3 and 4. The 
differences between the SCF and GF values are small and show that the electron 
distribution for a given basis does not change noticeably going from an SCF to 
a GF treatment. The fact, that the one-electron density matrix does not vary 
too much from cycle to cycle of iterations in the GF process, is shown also from 
the smallness of the coefficients of the determinants corresponding to the single 
excitations. 

Therefore, it is of some interest to compare the results of the GF approach 
with those which would be obtained by a configuration interaction treatment with 
double excitations only. Such comparison gives also a clue for a better under- 
standing of the physical meaning of A, when the ortho-normal set of orbitals used 
with the GF approach are the SCF-MO's. 

For  each group R constituted by only two basis orbitals rl and r 2 the group 
function ~b R will be given by (dropping the suffix r for the state) 

3 
r Z c~o~ (5) 

i=1 

where 

1 1 
1 5~/[_(F1~2)__ (~1Y2)] ; o R  = ~ _ 5 ~ ( F 2 ~ - 2 )  

q~= S Vz 

The matrix of the 3 x 3 secular problem to be diagonalized at the first cycle of 
iteration of the GF approach, is of the form 

H ~  0 

0 He,  f2 2 

HRf31 He~f32 

R 
Heff13 

R 
H~ff23 

R 
Heff33 

R __ R where Hem j - (~o i ]~efgf[ ~0~). ~ f  is given by (1) and is calculated with the density 
matrix arising from the SCF calculation: therefore, at the first cycle of iteration, the 
energy E o, calculated by the GF approach, i.e., 

eo = �89 Y~ {H '~(r r)+ HS~ (r 0} (6) 
R 

coincides with the SCF energy. 
R R The elements Heffl 3 =(qr2lrlr2) and Heff2 3 are smaller than the diagonal 

ones: the decrement of energy, relatively to E o, due to the group R, can then be 
calculated, up to the second order, by the perturbation method as 

In~f'12 (7) 
~R ~ R R 

(H~ffll -- Heff33) 
4* 
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and the total decrement, A, as a sum over the groups in which some correlation 
is allowed for, i.e;, 

A = E (2) = Z 6R" 
R 

So A appears to have the same addictive properties as Eo. 
From the above treatment it is clear that the GF approach, when the basis 

functions are the SCF-MO's and there are only two functions per group, is 
practically equivalent to a configuration interaction treatment in which only 
doubly excited states would be considered" in fact, the coefficients C2 g correspond- 
ing to single excitations are always very small 

For  example, in the case o f H 2 0  (b), the determinants to be taken in considera- 
tion should be 

1 
kg o = ~ d ( K ,  K, B1, ]~1' B2, B:, L1, L1, L2, T,2), 

1 
~1 - ~ d(K' ,  K', B 1, B,, B2, B2, L1, L1, L2, L2), 

1 
~2 = l ~  d ( K ,  K, Bi, Bi, n2, B2, L1, L1, L2, L2), 

1 
~3 -- ] / ~  d ( K ,  K, B1, B1, S~, B~, El, El, L2, L2). 

In fact, the diagonalization of the determinant 

Boo H01 H02 H03 

//10 Hll 0 0 

H2o 0 H22 0 

H3o 0 0 H33 

where HKa = (irk l Jr[ ~u), gives almost the same result for the ground state energy 
as the coresponding GF  calculation, the difference being a few units on the sixth 
significant figure. 

By the perturbation method, the energy up to the second order is given by 

IHo~[ 2 
E = E  0 + E  (2)=E 0 + 

(Hoo H~z) 

and it is easy to verify that 

�9 H0~ = H~y13 and (Hoo - Haz) = (HRf,1 -- HRt3~) 

where 2 refers to the determinant describing the double excitation relative to the 
substitution of orbital r 1 with r 2 in the group R. 

The results of Table 2 can be explained now on the basis of (5), (6) and (7). 
In the case o f H 2 0  (b), for example, the A obtained with Loe. (1) is lower than that 
with Loc. (2) and (3) for the higher value of (HRfll --H~f~3) in the bond, owing to 
a too high contribution of the two ls oxygen orbitals to the excited bond orbital B~, 
while Heffl a R  = (B 1 Bt' [ B 1B~) is almost the same in all cases. 
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The two values of A in the cases of Loc. (1) and Loc. (2) may  be split in their 
components  6 R which are given by, respectively 

~ i  . . . . .  he l l  = - -  0.0114; 6bond = -- 0.0120, [Loc. (1)] 

and 

6 i  . . . . .  hell = -- 0.0103 ; (~bond = -- 0.0200. [Loc.  (2)] 
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